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The problem of the scattering of a monochromatic wave incident on a submerged vertical 
plane was initially solved in [i]. Subsequent generalizations of this problem are found 
in [2-5]. The nonsteady-state problem is dealt with in [6], its solution yielding the asymp- 
tote of the flow over long periods of time, but it does not allow tracing the evolution of 
the process. 

The solution of the nonsteady-state problem is written out in the present paper in quad- 
ratures, thus making it possible in detail to study its properties. This is achieved by 
means of the integral of the problem [6] and the method of analytical extension. 

i. Let us examine the plane linear initial boundary-value problem 

A$ = Oin~,  eft + % = 0 (g = 0), ( 1 . 1 )  
r162162 ( t = O , g = O ) ,  

which describes the motion of a liquid, generated by the initial perturbation of the free 
boundary. At the instant of time t = 0 the surface of the liquid exhibits a concentrated 
elevation of area equal to unity, and in the vicinity of the point x0, when t > 0, this ele- 
vation disintegrates under the action of the forces of gravity. The right-hand Cartesian 
coordinate system is oriented so that the barrier F lies in the x = 0 plane, while the direc- 
tion of the y axis is opposite to that of the acceleration of free fall. Relationships (l.1) 
have been written in dimensionless variables, with the length and velocities chosen so that 
the Froude number of the problem and the depth of barrier submersion are equal to unity. 
The potential of the velocities q (x, y, t, x 0) depends on x 0 as well as on the parameter, 
the flow region ~ = {x, YlY < 0, x �9 RI}\F, F = {x, ylx = 0, y < -i}. The function ~ is 
a fundamental solution of the Cauchy-Poisson problem in the ~ region, since with the aid 
of the latter the solution of the general problem is written out in quadratures. 

We have to determine a solution to problem (i.i) such as to satisfy the following addi- 
tional conditions: 

lv~l ~< c[  x~ + (g + 1)~1 -~/~ (x, g ) ~  ~, ( 1 . 2 )  
lv~l ~ L2(fl), l~t( x, O, t, Xo)[ < + ~ (t > 0). 

The solution for ~ can be represented in the form of the sum of the even and odd com- 
ponents of the variable x. The even component of ~r corresponds to the initial conditions 
~r = 0, ~r~ = -(~(x - x 0) + 6(x + x0))/2 (t = 0, y = 0) and is written explicitly, since 
for it we have 8~r/Sx = 0 when x = 0, y ~ 0. The odd component of ~n represents the solu- 
tion of problem (i.i), in which the initial conditions have to be replaced by the following: 

r  r  ( t=O, y=O). (1.3)  

Here it is enough to construct ~ in the region x > 0, y < 0, since for x = 0, ~n = 0 in 
the case of -i < y < 0 (the potential is continuous in the flow region) and 8%~/8x = 0 
for the case in which y < -i. Subsequently Wr(x, y, t, x0) is regarded as a known function 
and we have to determine only the odd component of the potential (the subscript n is dropped 
where this results in no misunderstanding). 

2. We will denote the expression ~t~+~v (x > 0, y < 0, t > 0) in terms of g(x, y, 
t, x0). Proceeding formally, it is not difficult to obtain the boundary-value problem for 
the determination of this new function. From (i.i) we have 
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Ag =0in~, g=0(g =0),g~ =0onr, 

The additional conditions from (1.2) yield 

Igl < C~[x ~ + (g + t)21-V ~ (z ~ O, y < 0 ) .  

L e t  u s  n o t e  t h a t  t a n d  x0 a r e  c o n t a i n e d  i n  p r o b l e m  ( 2 . 1 ) ,  ( 2 . 2 )  a s  p a r a m e t e r s .  

(2 .1 )  

( 2 . 2 )  

L e t  g ( x ,  y ,  
t, x 0) be a known function, with the potential ~ then found as a solution for the evolution 
problem 

%t + % = g ( x , g , t ,  x o ) ( x > ~ O , g < O ,  t > 0), 
= O , r  = % ( x , g ,  x0) ( t = O ) ,  ( 2 . 3 )  

i n  w h i c h  x ,  x 0 f u n c t i o n  i n  t h e  r o l e  o f  p a r a m e t e r s ,  w h i l e  r ( x ,  y ,  x 0) i s  a h a r m o n i c  f u n c t i o n  
i n  t h e  c a s e  o f  x > O, y < 0 s u c h  t h a t  %~ = 0 i n  t h e  c a s e  o f  x = O, y < - 1 ,  % = 0 when x = 
O, - 1  < y~< 0 a n d  % = - ( 6 ( x  - x 0) - 6 ( x  + x 0 ) ) / 2  f o r  y = O, x > O. The  l a t t e r  c o n d i t i o n  
follows from (1.3). 

The function g(x, y, t, x 0) is infinitely differentiable when x > 0, y < 0, so that 
therefore ~(x, y, t, x0), determined from (2.3), is a harmonic function for the case in 
which x > 0, y < 0, satisfying the condition of nonpenetration to F. Indeed, having differ- 
entiated Eqs. (2.3) with respect to x and causing x to converge on zero (y < -i), we derive 
a uniform problem for the equation of heat conduction relative to ~x (0, -y, t, x0). In the 
class of slow-growth functions such a problem exhibits only a trivial solution. Following 
the procedures of [6], it is sufficient to solve (2.3) only when x = 0. When x > 0 the solu- 
tion for g(x, y, t, x 0) is expressed in terms of ~(0, y, t, x 0) ~ 8(t, -~) in quadratures. 

The solution of problem (2.1) with the additional condition (2.2) is constructed by 
means of the theory of analytical functions and is determined with an accuracy to some arbi- 
trary factor a(t, x0): 

g(x, y, t, xo) = a(t, xo) Im { l / V z ~ +  t }, z = x + iy, 

when x = +0 g (+O,  y ,  t ,  x 0) = - a ( t ,  x 0 ) / ~ y  2 - 1 ( y  < - 1 ) .  

3 .  When x = +0 i n  t h e  new v a r i a b l e s  a = t ,  x= - y ,  p r o b l e m  ( 2 . 3 )  a s s u m e s  t h e  f o r m  

Ox--O~= = a(a, X o ) / ] / ~ - - i  ( T >  t, ~ > 0), ( 3 . 1 )  
0 = 0 , 0 ~ = % ( 0 , - - ~ , x 0 )  ( ~ > t , a = O )  

a n d  c o r r e s p o n d s  t o  t h e  o n e - d i m e n s i o n a l  p r o b l e m  f o r  t h e  n o n u n i f o r m  e q u a t i o n  o f  h e a t  c o n d u c t i o n ,  
w i t h o u t  a n y  i n i t i a l  c o n d i t i o n s ,  a n d  h e r e ,  a t  t h e  b o u n d a r y  o f  t h e  r e g i o n  ( a  = O) t h e  v a l u e  
o f  t h e  s o u g h t  f u n c t i o n  (0 = O) a n d  i t s  f i r s t  d e r i v a t i v e  Oa(O,  x )  a r e  g i v e n .  We h a v e  t o  
d e t e r m i n e  b o t h  t h e  f u n c t i o n  O ( a ,  ~)  a n d  w(a,  x 0) u n d e r  t h e  a d d i t i o n a l  c o n d i t i o n  

I o(a, ~)1 ~< c2(~)= ~ (~ > o, �9 > t) ( 3 . 2 )  

(k is a positive quantity independent of T). Condition (3.2) corresponds to the slow-growth 
condition for %~(0, y, t, x 0) as t + ~. 

The function a(a, x 0) describes the distribution along the shaft (~ > 0) of heat sources 
and their behavior when x > i is known. For example, the shaft may include impurities whose 
particles under specific conditions "explode" with evolution of heat. We are familiar in 
this case with the occurrence of an "explosion" of a single particle; however, the distribu- 
tion of the "exploding" particles along the shaft is not given and must be found from the 
known flow of heat O~(0, ~) through the end of the shaft. 

The Laplace transform for T, such as that used in (3.1), where O(~, x), the right-hand 
side of the equation and the initial conditions of extension to zero in the region T < i, 

> 0, leads to an ordinary differential equation whose general solution is as follows: 

0 m (a,  p) ---- C1 (P, xo) e V ~  + C2 (P, %) e - ~  + 
ao 

K 0 (p) 
+ ~ a ( a  o, %) e-~~la-%l d% 

0 
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( 0L(=, p)= 0(=,~)e-~PdT,~ep~0, K0(p) is the MacDonald function of zeroth order, K0(p) = 
0 

Se-~P(~2--1)-~/~d~).~ The limitation imposed in (3.2) yields C 1 ~ 0 [7], while the conditions 

when a = 0 lead to the following equations: 

C 2 (p, Xo) = -- 0c~ (0, p) /2  ] / rp ,  a ((z o, Xo) e - V ~ %  do: o = 
0 

= o~ (o, p)/Ko (p), 

(3.3) 

The second of which serves for the determination of the function a (~, x 0) a [K0(p) has no 
roots when --, < argp ~ v [8]]. If it is found, then 8(~, ~) is written in quadratures 

oo 

O(o:, "~) = 2 ~ a ( a o ,  xo)k(o:--  O:o, "~)dao 
0 

k ((z, "0 = f ~ ~(~-~o) 
1 

i c~ 2 t 4(,_To ) % (0, - -  *o' Zo) d ,o ,  
2 ] / ~  e 

1 V T -  '~'0 

d~ o 

(3.4) 

In (3.3) we will denote the right-hand side in terms of F(p), Rep > 0. The function F(p) 
permits an analytical extension into the left-hand half-plane Re p < 0 with a branch along 
the negative portion of the real axis. We will denote the values of F(p) at the lower and 
upper edges of this branch as F-(a) and F+(o) (p = oeliZ), respectively. Then, for the com- 
plex variable s = ~p (v~= i) Eq. (3.3) yields the Laplace transform of a(~, x0) for the 
case in which Re s ~ 0. The function F(s 2) is analytical and exhibits no singular points 
for Re s > 0, so that a(~, x0) is therefore determined by the Bromwich integral 

r 

a (a, Xo) = t y e SCtF (s 2) ds 
r  

(c > 0), 

which as c § +0, s = iD, D e R I yields 

a (a, Xo) = 2/h - F -  ( ~ )  e ~'~ d~ + F + (ix 2) e ~ dt~ �9 
0 

(3.5) 

Formulas (3.4) and (3.5) uniquely define the solution of problem (3.1) under the additional 
conditions of (3.2). As proof of this assertion it is sufficient to establish, first of 
all, that F(p) permits the analytical extension, without any singular points, to the entire 
plane with the branch along the ray Rep < 0, Imp = 0; and secondly, that F(p) + 0 as IPl + 

~, larg Pl < ~; thirdly, the integrals SFi(o)a -I/~ da converge absolutely. 
0 

4. Dropping the cumbersome calculations, we present the expression 

x~ d ~2 _ t t o~ (o, ~) = - ~ - -  ~ + ~ ~ + ~,  

with the Laplace transform of this function 

o~ (o, p) = xo [ 
ao 

+ t) V ~ -  ~ (~ + ~)J 

The analytical extension of the MacDonald function K0(p) to the left-hand half-space Rep < 
0 with the branch along the negative portions of the real axis is given by the following 
formula from [8]: 
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Ko(p) = Ko(--P) 4- niIo(--p) (Rep < 0 ,  Imp X 0), 

where  I o ( p )  i s  a m o d i f i e d  B e s s e l  f u n c t i o n ,  I o ( - i  p) = J o ( P ) ,  I o ( - P )  = I o ( P ) -  At t h e  edges  
of the branch (we identify the upper edge of the branch with a plus sign, while the lower 
edge is identified with a minus sign) 

K+o (x) = Ko(--x)-- ~ifo(x), Ko- (x) = Ko+(x), x < O. ( 4 . 1 )  

We a r e  l e f t  o n l y  w i t h  t h e  need  to  c o n s t r u c t  t h e  a n a l y t i c a l  e x t e n s i o n  to  t h e  r e g i o n  Re p < 0 
o f  t h e  i n t e g r a l  

i e - ' : #  d~ 
V ( p ) =  1 Y~-~:-~,('~ + ' , ] )  ' 

(4.2) 

after which the function F(p) will be determined for the entire plane with a branch along 
the ray Rep < 0, Imp = 0. Using 

co 

(%~ -~- X2)--I = IX01-1 ~ O--[XOl~160$'[~] dl], 
0 

we rewrite (4.2) as follows: 

t ( e-lX01n [K ~ (p _ i~) + K 0 (p 4" i~)] d~ = ~ (Ix (p) +3,~ (p)). 
3,(p) = Zlx0l 

I t  i s  n o t  d i f f i c u l t  t o  s e e  t h a t  J 2 ( P )  = J ~ ( P ) ,  J ~ ( p )  = J 2 ( p J ,  so  t h a t  t h e r e f o r e  i t  i ~  e n o u g h  
to  c o n s t r u c t  t h e  a n a l y t i c a l  e x t e n s i o n  o f  t h e  f u n c t i o n s  J z ( P ) ,  J2 (P )  i n t o  t h e  r e g i o n  Rep < O, 
Imp > 0 and to use the indicated formulas. In particular, the limit values of J(p)~ at the 
upper [J+(x)] and the lower [J-(x)] edges of the branch are associated by the relationship 
J+(x) = J--=-~. With imaginary values for the argument p = iX (I > 0) from (4.1) we have 
the equations 

1 

J1 (iL) = J~ (--i~) - -  =iLefi% I{~' e-{l%ll3fVo'(/L[3) d[~ + ]/x~ + 
0 

1 
3,. (~.) = 3,~ (-~z.) + ~ - , I ~ o l ~  o,~oI,.~. 4 (a13) d~ - V4 + 

o 

_ _  e~lX0l ix , 

e-~l=ol ix , 

which will then lead to the formulas for the analytical extension 

1 

gi ei[Xo[p 3,1 (P) = 3,3 ( - -P)  - -  ~P e~ix~ e-~l%[~PIo (P~) d~ + ] /x~ + t 
0 

1 
3,3 (P) = 3"1 (--P) + nP e-fl%l~ S e~lX~176 (p[~) d~- ~ e -fl%l~ 

o V.~+i 
( R e p < O ,  I m p > O ) .  

From this we have 

,{ J (p) = z--~0 ] 2JXol3,(--P) 2 ~  sin I Xo I p - 2=ip ~ / o  (P~) sin [ I Xo I p (t - @)] d@ 
0 

when Rep < 0, Imp > 0. At the upper edge of the branch (Imp = +0) 

Ixl 

+ i sin%Zxo %st ! io(~)sin(xo[lxl_[~l)dg" 3,+ (x) = 3, ( - x )  - v~'%" (4.3) 
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With consideration of (4.1) and (4.3) the value of F(p) at the upper edge of the branch 
is given by the expression 

z o z o 
--" + V x~ + I J+ (-- r + (- ~) (a > O). (4.4) F+ ((Q = # g z ~  + i "i-d- 

It is clear that at the lower edge F-(o) = F--~o). We will find the asymptote as o ~ ~ of 
the function F+(o), determined in ~4.4). As o + ~, since the modified Bessel functions have 
the asymptotes [8] I0(o) = (2~o)-~12e~ + 0(i/o)], K0(o) = (2o/~)-~/2e-~ + 0(i/o)], then 

x~ +'-Kt V x  ~ + t l o ~ ( ~ )  , 
F + (a) = = g-z~ + i o 

We will represent the convolution of D O (~) = ~ I o (p) sin x o (a -- p) dp 
0 

in equivalent form 

D O (~) = e ~ ] e--~/o (p) e -("-~) sin x o (a -- p) dp. 
0 

Here t h e  f u n c t i o n  e - P s i n x 0 p  i s  a b s o l u t e l y  i n t e g r a b l e  in  [0, T] ,  T > 0 and d i m i n i s h e s  more 
rapidly than any power of p-~ as p -+ =, with the function e-~10(~) limited and integrable 
in [0, T], as ~ ~ 

e - % ( ~ ) =  ~ ~ 8 ~ ] / ~  + "'* 

Consequently, we can use the following result from [9]: 

Do (~) = e ~ 

Finally, we find 

from which 

e-o sin xop dp + 2~_V2~ o p + e-~ sin xop dp -}- 0 (a-~/2) . 

D o ( a ) =  x ~ + t  1/2~5 + 8 ( z ~ + i )  * o ~  + "'" (~ -~c~  

F+ (~) = t ~0 1 + 0 (a-~). ( 4 . 5 )  

R e l a t i o n s h i p  ( 4 . 5 )  shows t h a t  f o r m u l a s  ( 3 . 4 )  and ( 3 . 5 )  i ndeed  d e t e r m i n e  t h e  s i n g l e  s o l u t i o n  
of problem (3.1), (3.2). Substituting (3.5)-(4.4) into (3.4), we obtain a solution for this 
problem in the form 

---- *(~-~o) a*O O(cz, z) = 

oo 

t t y Im F + (~s) k, (~, x, ~) d~, + ~ y Re F + (~2) k~ (a, T, Ix) dp, 2~8/* 
o 0 

where kr (~, T, ~) = : k(~ --  (z o, z)cos a .~  dao; k; (a, ~, ~) = : k (~ --  a e, ~) sin ao~ d~o; 
0 0 

X 0 X 0 ] / r  2 

+ ~z~ (~, Zo)/o (o)}/lo (~); 

Im F + ((y) ----- - -  ~ Vx--~ + 1 {l~ ,'a, Xo) K o (a) --  ul 1 (a, xo) I o (o)}//o (o); 

e -~a dl: ~ sin Xo~" 
h (o, Xo)=, V;~-~ (~ + 4) + V 4 + ~ x ~ '  
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(; 

l~ (a, xo) = ~-o I~ (~) sin x o (a - -  ~) d~; l o (~) = Ko 2 (a) + ~ I o  ~ (a). 
o 

L e t  us  n o t e  t h a t  t h e  f u n c t i o n s  k c ( a ,  ~, ~ ) ,  k s ( a ,  ~, U) ,  s  a r e  i n d e p e n d e n t  o f  t h e  p a r a m -  
e t e r  x o and t h e  a s y m p t o t e  0 ( a ,  ~) f o r  l a r g e  a n d  s m a l l  v a l u e s  o f  Ixo l  i s  t h e r e f o r e  d e t e r -  
mined  i n  t e r m s  o f  t h e  c o r r e s p o n d i n g  u n i f o r m  a s y m p t o t e s  o f  t h e  f u n c t i o n s  s  Xo) , s  
x0). Thus, as x 0 + 0 it is not difficult to obtain 

~ ,  d ' f  .. Zo~ 
f § + + o (o > 0), 

l~ (o, Xo) = ~O~Io (o) + -~- ~ [I0 ((r) L~ (o) - -  I~ (a) L 0 (~)] - -  ~ I ~  (o) + 0 (x~) (0 < o < ] x,  1=~). 

Here L~(o), L0(o) are modified Struve functions; L v(o) = e-(9+l)~i/2Hv(e~i/2o). For Ix01 >> i 

lx (~, xo) = xo a (K0 (o) + ~ sin XoO ) + 0 (zo*), 

~ (~, z0) = ~ o  ~ ([o (6) - ~os Xo~) + 0 ( z J ) ,  

i n  t h i s  c a s e  t h e  f o r m u l a s  f o r  R e F + ( o ) ,  I m F + ( o )  a r e  s i m p l i f i e d :  

Re Y + (~) = l [  1 (~) {K o (~) sin xoo" - -  r~I o (c) cos Zo~ } sgn Xo, 

Im F + (a) = lo 1 (~) {K o (o) cos xoa + ~ I  o (c) sin x0a } sgn z o. 

5. By means of the constructed function 8(~, <) the solution of the original problem 
(i.i) is written in quadratures 

oo 

i f ~-l /ze~ sin ~ t cos ~ (x - -  xo) d ~  (x, y, t, xo) = - -  %- 
0 

t ~  

fl(t  o, ~) N (~ - -  y, x, t - -  to) d~ dt  o + 
0 1 

4 ~ d~ 

1 

0 

Here the first term yields the solution for the problem in the absence of a barrier [i0], 
and the subsequent terms describe the correction factor for this solution, due to th~ pres- 
ence of a submerged plate. The deformation of the free boundary y = ~(x, t) [n = --~t~(x, 
0, t, x0)] is calculated from the formulas 

8~ 

n (z, t, xo) = ~ H~ (xo)n,, (x, t, Xo) + ,1 + (x, t, Xo) + 
1%~0 

+ n7 (z, t, Xo) + n + (z, t, zo) + n7 (x, t, Zo), 
o o  

f g g  t cos g ( x -  Xo) d~; Ho (Zo) = l; w h e r e  ~o(X, t ) =  ~-- cos 
8 

( 5 . 1 )  

oo 

0 

H1 (zo) = ~o 
V%-F4q' 
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O 

gO 2 H~ (Xo) =- ~ V Xo + t; 
o o  

0 

//8 (xo) = ~-~; 

~1} (x, t, xo) = -~ ~ -2  f ~I/'K (~1 lf4 (~, t, Xo) sin ~x d~; J~  0 
0 

~l~ (x, t, xo) = - -  ~-~ Im S ~K o (~) l~ (~, Xo) eT=WO sin ~x d~; 
0 

18 (~, xo) = i ~-~ ~ " V; + 4)' 

{? 1 e it~t dl~ 
l~ (g, t, xo) = Im v.p. ~r  § @) (~ _+ V~).(~ + ~) ; 

0 

Y Y d~ 16 (g, xo) =Im F + (~) ~ ,  z~ (g, Xo)-- v.p. ~-  @) ~(~ + ~/(~ + V~); 

Bearing in mind the study of the limit regimes of liquid motion above the vertical plate, 
let us examine the more general problem 

A'U = 0 in Qa, Urt' + Fr -IUu, = 0 (y'= 0), 

U=,=O on ra, U=O, Ut,=--A6(x'--xl) (t' = O, y'= 0), (5.2) 

in which Fa = {x', y'Ix' = O, y' < -a}; Sa = {x', Y'IY' < O}\Fa; The Froude number Fr = 
V,2/gL,; L,, V, denote, respectively, the characteristic length and the speed of the process. 

Let the deformation of the free boundary in (5.2) be described by the equation y' = 
h(x', t', xl), in which case it is not difficult to obtain the formula h(x', t', x I) = 
a-iFro(x'/a, t'/FV~-r-a-, xl/a) from which it follows that as a + 

oo 

h(x', t', xl) = ~ - l F r  S cos ( ] /~-7~t ' )  cos(] (x ' - -  xl)da + O(a-2), 
0 

i.e., the correction factor due to the presence of the vertical plate exhibits an order of 
o(a -2) when a >> i. When the barrier approaches the free surface (a + 0), then with x' = 
O(al), t' = O(/a~. '~ , x I = O(a) the constructed solution (5.1) loses force: h = O(a-l), a + O, 
and it becomes necessary to make use of the "internal" asymptotic expansion in the vicinity 
of the coordinate origin, treating a as the small parameter. 
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THE INVERSE PROBLEM OF STREAMLINING SINGULARITIES WITH THE PLANE FLOW 

OF AN IDEAL FLUID WITH A FREE BOUNDARY 

I. V. Isichenko, A. V. Konovalov, E. S. Levchenko, 
and A. S. Savin 
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In the present study we will examine the plane potential steady-state flow of a heavy 
ideal fluid with a free boundary. In this case, the velocity potential has a finite number 
of point singularities. The potential motions of the fluid in the presence of a finite sys- 
tem of point singularities were examined in [i] in connection with the problem of the stream- 
lining of a wing-shaped object under water, and the calculation of the wave resistance, and 
these were dealt with also in [2, 3], etc. In the cited references the problem was solved 
in "direct" formulation, i.e., on the basis of given point singularities of a complex poten- 
tial, which simulated the streamlined solid, and the profile of the free surface and the 
velocity field were determined. The solutions were derived within the framework of linear 
wave theory. In the present paper we solve the "inverse" problem: the stationary profile 
of the free surface is given, and we have to reconstruct the pattern of the flow through 
the thickness of the fluid. The solution of the problem is achieved both in approximate 
linear theory and in a precise formulation. 

i. Construction of the Solution. Let S(x) (-= < x < ~) represent the profile of the 
free surface and let v 0 be the velocity of the unperturbed flow. By means of G c C we will 
denote the region occupied by the fluid: G = {z : z = x + iy, y < S(x)} (we will investigate 
an infinitely deep fluid). The set of points lying at the surface is denoted S: S = {z: 
Imz = S(Re z)}. We will impose the following limitation on S(x): 

s(x) < v0~/2g (1.1)  

(g i s  t he  g r a v i t a t i o n a l  a c c e l e r a t i o n ) .  F u l f i l l m e n t  of  i n e q u a l i t y  ( 1 . 1 )  en su re s  t he  absence  
of  c r i t i c a l  p o i n t s  o f  complex v e l o c i t y  a t  t he  boundary of  t he  f l u i d  and t h i s ,  in  t u r n ,  guaran-  
t e e s  t he  smoothness o f  t he  p r o f i l e  f o r  S(x)  [4 ] .  Let  P r e p r e s e n t  t he  t o t a l  number o f  p o l e s  

f o r  t he  complex v e l o c i t y  w(z) in  G, i . e . ,  P = ~ p~, where P < = and Pi  r e p r e s e n t  the  m u l -  
: i: z i n g  

tiplicity of the pole z i. The quantities P and Pi are not known in advance and are deter- 
mined in the process of the solution. Moreover, the natural condition of limitation with 
respect to the velocity of the fluid at infinity is assumed to be satisfied: 

Iw~)l< w <  ~- ~ ,  I z ] > R ,  z ~ G  ( 1 . 2 )  

(R i s  a r a t h e r  l a r g e  number) .  The boundary c o n d i t i o n s  f o r  the  p o t e n t i a l  W a r e  s a t i s f i e d  
a t  t he  f r e e  s u r f a c e :  

Lyubertsy. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 
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